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Hydrodynamics

Liquids and gases can flow and are therefore, called fluids.  Although fluids, in 

general, doesn't have definite shape of  its own, liquids assume the shape of  its 

container for a fixed volume, whereas a gas fills the entire volume of  its 

container. 

If  we apply an external pressure on a liquid, change in its volume is small 

compared to a gas. We can say that liquids have much lower compressibility 

compared to gases. A fluid deforms easily if  we apply a shear stress (tangential 

force), which enable them to flow. 

Fluid dynamics describes the flow of  fluids, both liquids and gases, whereas 

hydrodynamics deals with the liquids in motion. Viscosity and surface tension are 

two important properties of  a liquid. 



Let us start with a simple daily observation.  When you open a water tap slowly, 

the water flow seems to be very smooth, but if  you open the tap more and 

allow more water to flow, then it loses its smoothness.

Imagine what is happening to various liquid particles coming one after the other 

at a particular point within the flow. In the case of  a smooth flow the velocity 

of  each passing fluid particle remains constant and the flow is said to be steady

and the path followed by a particle under a steady flow is called a streamline. 

[Please note that the term "velocity" is used, which means that both magnitude 

and direction remains same]. The tangent to the streamline at any point gives 

the direction of  flow of  the liquid at that point. A streamline can be straight or 

curved path as shown in the figure.

Streamline and Turbulent flows



As we have seen in the previous example, the flow is streamline only at lower 

velocities. When the velocity of  flow exceeds a particular velocity, called the 

critical velocity, the flow is no longer streamline but more like a zigzag one and is 

called turbulent flow. 

Similar to the turbulent flow of  water from a full open water-tap,  water flowing 

through a rocky river is also an example of  turbulent flow.

Note that in a streamline flow, different layers flow separately without mixing, 

whereas in a turbulent flow intermixing of  different layers takes place.

Streamline and Turbulent flows

Streamline flow Turbulent flow



Viscosity of  a fluid is a measure of  its resistance to deformation at a given rate. 

Honey is more viscous than water.

Viscosity of  a liquid arises due to the internal frictional force between adjacent 

layers of  liquid that are in relative motion. Consider the case of  a laminar flow 

of  a liquid through a tube, it flows with a higher speed near the tube's axis than 

near its walls. 

In fact, the velocity profile across the cross-section of  the tube will be parabolic 

as shown in figure below (we will see it in the next section)

Viscosity



Consider two adjacent layers P and Q of  a streamline flow over a horizontal 

surface, separated by a distance dx and having velocities v and (v+dv).

Since the velocity of  upper layer is slightly greater than the lower layer, a relative 

motion is set up between the layers P and Q. The upper layer will experience a 

force dragging it backwards by the lower layer and this force is known as internal 

friction or force of  viscosity. The viscous force acts tangentially on the layers.

The property by virtue of  which a liquid opposes the relative motion between 

different layers is known as viscosity.

Viscosity
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The velocity gradient, between the two layers P and Q is

It was Newton who showed that the tangential viscous force F acting on a layer 

is directly proportional to the area A of  the layer and the velocity gradient.

That is

or (Newton’s law of  viscous flow) (1)

where η is a constant called the coefficient of  viscosity (Nsm-2) of  the 

liquid. 

If  A=1 and dv/dx = 1, then F= η . Thus the coefficient of  viscosity of  a liquid 

may be defined as the tangential force acting on unit area of  a liquid layer 

moving with a unit velocity gradient normal to the direction of  flow.

Negative sign indicates that viscous force acts opposite to the direction of  flow.

Viscosity
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The velocity at which a streamline flow changes to turbulent flow is known as 

critical velocity. Reynolds proved experimentally that the critical velocity vc of  

a liquid depends on the coefficient of  viscosity η, density ρ of  the liquid and 

the radius r of  the tube through which the liquid is flowing

(2)

Where K is a constant called Reynold’s number. Typically a value below about 

2000 for Reynold’s number corresponds to a laminar flow.

From the above equation it is clear that highly viscous, low density liquid flowing 

through a narrow tube will follow a streamline profile. Now you know why you 

use capillary tubes are used for measuring viscosity of  liquids in physics labs.
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Consider a liquid flowing through a horizontal capillary tube under a difference 

in pressure between the ends of  the tube. Poiseuille was able to derive an 

equation for the amount of  liquid flowing per second through the tube, under 

following assumptions.

(1)  The flow is streamline, parallel to the axis of  the tube

(2)  The pressure over any cross-section at right angles to the axis of  the    

tube is constant, that is no radial flow of  liquid.

(3)  The velocity of  the liquid layer in contact with the tube is zero and it 

increases gradually towards the axis of  the tube.

(4) Since the tube is placed horizontal, the gravity does not influence the 

flow.

Poiseuille’s Equation



Consider a the streamline flow of  a liquid of  density  ρ through a horizontal 

capillary tube of  length L and radius r. 

As  assumed, the velocity of  liquid in contact with the walls of  the tube is zero 

and it increases towards the axis. Consider a cylindrical layer of  liquid having a 

radius x and another coaxial layer having radius x+dx. Let dv be the velocity 

difference between the two layers. 

Poiseuille’s Equation
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The velocity gradient between the two layers is

According to Newton’s law of  viscous force

Where η is the coefficient of  viscosity and A is the surface area of  the cylinder 

of  length L and radius x.

If  P is the pressure difference between the ends of  the tube, then the force 

driving the liquid forward  = Pressure × Area = P.πx2.

For a steady flow, this driving force is equal to the viscous force

Poiseuille’s Equation
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Rearranging, we get

Integrating,

(3)

To find the constant of  integration, C, at the walls of  the tube x = r, v = 0.

then

or 

Poiseuille’s Equation
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Substituting for C in equation (3),

(4)

Above equation gives the velocity of  the liquid layer at a distance x from the 

axis of  the tube. 

If  this layer has a finite thickness of  dx, then the volume of  the liquid flowing 

through this layer per unit time dQ = velocity × cross-sectional area of  the layer.

dQ = v × 2π x dx

Poiseuille’s Equation
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Total volume flowing per second through the tube can be obtained by 

integrating the above expression over the entire cross-section

(5)

This is the Poiseuille’s equation for the rate of  flow of  a liquid through a 

capillary tube. If  the liquid is flowing through the capillary tube for a time t

seconds, then the total volume is given by 

or (6)
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(1) Constant Pressure Head Method

In the constant pressure head method, we 

use a large volume container to hold the 

liquid so that even after the flow of  the 

liquid through the capillary tube for a finite 

time, the liquid level in the container 

remains approximately at the same height. 

The capillary tube connected at one side 

near the bottom of  the container is placed 

in the horizontal plane.

Measurement of  Viscosity using Poiseuille’s Equation
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Now the liquid is allowed to flow through the capillary tube for a known time 

t and the volume V thus collected is measured. Height h of  the water level 

from the axis of  the capillary tube is measured. The value ht/V is then 

calculated. The experiment is repeated for different t or h and in each case 

ht/V is calculated. Length L of  the capillary tube is measured using a meter 

scale and radius r of  the capillary tube using a travelling microscope. Using the 

known value of  the density ρ of  the liquid, coefficient of  viscosity of  the 

liquid is calculated using the formula;

Here the pressure exerted by the liquid column of  height h is P = hρg

then

Constant Pressure Head Method
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(1) Variable Pressure Head Method

In the variable pressure head method, a burette (a long 

narrow glass tube) is used as the liquid container. 

Bottom of  the burette is connected to a horizontally 

placed capillary tube. As the liquid flows through the 

capillary tube, the height of  the liquid level in the 

burette decreases and hence the pressure head changes. 

Time t taken to flow a small volume V of  the liquid 

(say 1 ml) is noted. Let h1 and h2 are the initial and final 

height of  the liquid level in the burette from the axis of  

the capillary tube.

Measurement of  Viscosity using Poiseuille’s Equation
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Average pressure head h = (h1+h2)/2 is calculated and from that ht is 

calculated. The experiment is repeated for different h1 and h2 , but same 

volume V and in each case t is measured and the product ht is calculated as 

earlier and it will be a constant.

Length L of  the capillary tube is measured using a meter scale and radius r of  

the capillary tube using a travelling microscope. Using the known value of  the 

density ρ of  the liquid, coefficient of  viscosity of  the liquid is calculated using 

the formula;

Here the pressure exerted by the liquid column of  height h is P = hρg

then

Variable Pressure Head Method
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Consider the streamline flow of  a liquid through a non-uniform pipe having 

different area of  cross-section as shown in figure.

Let A1 and A2 be the area of  cross-section of  the pipes at the point P and Q. 

Let v1 and v2 be the average velocities at that two points. Assuming that the 

liquid is incompressible, let ρ be the density of  the liquid at P and Q. 

Since no liquid is added or lost in between the two ends of  the pipe, the 

amount of  liquid flowing through any cross-section of  the pipe in a given 

time is same. Hence, mass of  the  liquid flowing per second at both point P 

and Q should be the same.

Equation of  Continuity
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That is A1v1ρ = A2v2ρ

or A1v1 = A2v2

or Av = constant (7)

This is the equation of  continuity for the streamline flow of  an incompressible liquid.

Av gives flow rate and it remains constant throughout the pipe of  flow. Thus, 

at narrower portions where the streamlines are closely spaced, velocity 

increases and its vice versa.

Equation of  Continuity



A liquid undergoing streamline flow possesses three forms of  energy, namely

(1) Kinetic Energy

(2) Potential Energy

(3) Pressure Energy

(1) Kinetic Energy

Consider a liquid of  mass m and density ρ is flowing with a velocity v, then 

the 

Kinetic energy possessed by the liquid 

Kinetic energy per unit mass

Kinetic energy per unit volume
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(2) Potential Energy

Consider a liquid of  mass m is situated at a mean height of  h, above some 

reference level then the 

Potential energy possessed by the liquid = mgh

Potential energy per unit mass = gh

Potential energy per unit volume 

Energy possessed by a liquid
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(3) Pressure Energy

Consider a beaker fitted with a frictionless piston 

at the bottom side tube attached to the beaker as 

shown in figure. 

Let ρ be the density of  the liquid filled. 

Let a be the area of  cross-section of  the piston. 

Let p be the pressure experienced by the piston 

due to the finite water column in the beaker.

Energy possessed by a liquid



Energy possessed by a liquid

If  we push the piston through a distance x towards the beaker, the volume of  

the liquid pushed back into the beaker, V = ax

Mass of  the liquid pushed back, m = Vρ

Force applied on the piston = pressure × area = pa

Work done on the piston = Force × displacement = pax = pV

This work done is the pressure energy of  a mass m = Vρ of  the liquid.

Hence, the pressure energy per unit mass  

Pressure energy per unit volume
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Bernoulli’s Theorem-Statement

Bernoulli’s theorem states that as we move along a streamline the total 

energy or the sum of  the pressure energy, the kinetic energy per unit 

volume and the potential energy per unit volume  remains a constant.

that is

Since Bernoulli’s theorem is a conservation of  energy theorem, it is applicable 

only for incompressible non-viscous liquids undergoing streamline flow. If  the liquid is 

viscous in nature, then there will be energy loss due to higher frictional force. 

If  the flow is turbulent, then the pressure and velocity of  the liquid are 

randomly fluctuating and the above theorem is no longer valid.
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Bernoulli’s Theorem-Proof

Consider a pipe positioned at varying heights as shown in figure. Consider a 

fluid moving through the pipe of  varying cross-sectional area A1 and A2 at P 

and Q at heights h1 and h2 from a reference point. If  an incompressible fluid 

of  density ρ is flowing through the pipe in a streamline, its velocity must 

change as a consequence of  equation of  continuity and let it be v1 and v2 . Let 

p1 and p2 be the pressures at P and Q.
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Bernoulli’s Theorem-Proof

In a small time interval δt, the liquid at point P moves a distance v1δt

Force acting at the point P = A1p1

Work done in moving the liquid through a distance v1δt at point A is

W1= Force× distance

= A1p1 v1δt

Similarly, work done in moving the liquid through a distance v2δt at point B is 

W2 = A2p2 v2δt

But, according to equation of  continuity, A1v1 = A2v2

Therefore W2 = A1p2 v1δt

Net work done by the pressure W = W1 - W2 = (p1-p2)A1v1 (8)

This work done is partially utilized for lift the liquid from height h1 to height 

h2 and the remaining is used to provide the flow velocity.



Bernoulli’s Theorem-Proof

The work done in lifting the liquid from h1 to h2 = mg(h2-h1)

This work is converted to the potential energy of  the liquid.

Now, the gain in kinetic energy due to change in velocity 

Therefore, the total change in energy of  the mass m in a time δt is

(9)

Since, this energy is provided by the work done by the pressure, equate (8) and 

(9), we get
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Bernoulli’s Theorem-Proof

But, mass m of  the liquid having density ρ flowing through an area of  cross-

section A1 with a velocity v1 is given by m = volume × density = A1 v1 ρ

Substitute for m in (10), we get,

cancelling A1 v1

rearranging

dividing throughout by ρ we get,
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Bernoulli’s Theorem-Proof

or we can write

(11)

Hence, Bernoulli’s theorem is proved.

Dividing (11) throughout by g, we get

Since each term has the dimension of  length, each term in the above equation 

is called pressure head, velocity head and gravity head respectively.
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